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Abstract

We extend the theory of nonnegative matrices to the matrices that have some
negative entries. We present and prove some properties which give us information,
when a matrix possesses a Perron-Frobenius eigenpair. We apply also this theory by
proposing the Perron-Frobenius splitting for the solution of the linear system Az = b
by classical iterative methods. Perron-Frobenius splittings constitute an extension of
the well known regular splittings, weak regular splittings and nonnegative splittings.
Convergence and comparison properties are given and proved.
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1 Introduction

In 1907, Perron [14] proved that the dominant eigenvalue of a matrix with positive entries
is positive and the corresponding eigenvector could be chosen to be positive. With the term
dominant eigenvalue we mean the eigenvalue which corresponds to the spectral radius. Later
in 1912, Frobenius [7] extended this result to irreducible nonnegative matrices. Since then
the well known Perron-Frobenius theory has been developed, for nonnegative matrices and
the well known Regular, Weak Regular and Nonnegative Splittings have been introduced
and developed for the solution of large sparse linear systems by iterative methods (Varga
[16], Young [20], Berman and Plemmons [2], Bellman [1], Woznicki [18], Csordas and Varga
[5], Neumann and Plemmons [10], Miller and Neumann [9], Marek and Szyld [8], Woznicki
[19], Climent and Perea [4]). (An excellent account of all sorts of splittings can be found
in Nteirmentzidis [12]). Such linear systems are yielded from the discretisation of elliptic
and parabolic partial differential equations, from integral equations, from Markov chains
and from other applications (see, e.g., [2]). In 1985, O’Leary and White [13] introduced the
theory of Multisplittings which is very useful for the solution of linear systems on parallel
computer architectures. Since then many researchers, based on their theory, have proposed
various Multisplitting techniques (Neumann and Plemmons [11], Bru, Elsner and Neumann
[3]; Elsner [6], White [17] and others).

Recently, Tarazaga, Raydan and Hurman [15], have given a sufficient condition that guar-
antees the existence of the Perron-Frobenius eigenpair, for the class of symmetric matrices
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which have some negative entries. Their result was obtained by studying some convex and
closed cones of matrices.

It is obvious, from the continuity of the eigenvalues and the entries of the eigenvectors, as
functions of the entries of matrices, that the Perron-Frobenius theory may hold also in the
case where the matrix has some absolutely small negative entries. This observation brings up
some questions. E.g., How small could these entries be? What is their distribution? When
such a matrix looses the Perron-Frobenius property? These questions are very difficult to
answer. Tarazaga et al in [15] gave a partial answer to the first question by providing a
sufficient condition for the symmetric matrix case.

In this paper the behavior of such matrices is studied. Sufficient and necessary condi-
tions as well as monotonicity properties are stated and proved, for the general case of real
matrices. So, we answer implicitly the above questions by extending the Perron-Frobenius
theory of nonnegative matrices to the class of matrices that possess the Perron-Frobenius
property. Finally, we apply this theory by introducing the Perron-Frobenius splitting for the
solution of linear systems by classical iterative methods. This splitting is an extension and a
generalization of the well known regular, weak regular and nonnegative splittings. We also
present and prove convergence and comparison properties for the proposed splitting.

This work is organized as follows: In Section 2 the main results of the extension of
the Perron-Frobenius theory are stated and proved. In Section 3 we propose the Perron-
Frobenius splitting and give convergence and comparison properties based on it. As the
theory is being developed, various numerical examples are given in the text to illustrate it.

2 Extension of the Perron-Frobenius theory

We begin with our theory by giving two definitions:

Definition 2.1 A matriz A € IR™" possesses the Perron-Frobenius property if its dominant
eigenvalue \; is positive and the corresponding eigenvector 1) is nonnegative.

Definition 2.2 A matriz A € IR™ possesses the strong Perron-Frobenius property if its
dominant eigenvalue \; is positive, simple (A > | N\, 1 =2,3,---,n) and the corresponding
eigenvector 1) is positive.

It is noted that Definition 2.1 is the most general of the relevant ones given so far.
The analogous definition in the well known Perron-Frobenius theory is that for nonnegative
matrices. On the other hand, in Definition 2.2 a subset of matrices of Definition 2.1 is
defined, which is analogous to that of irreducible and primitive nonnegative matrices. The
next two theorems give sufficient and necessary conditions for the second class of matrices.

Theorem 2.1 For a symmetric matriz A € IR™" the following properties are equivalent:
i) A possesses the strong Perron-Frobenius property.
i) There ezists an integer ko > 0 such that A >0V k > k.

Proof: (i = ): Since A possesses the strong Perron-Frobenius property, its eigenvalues
can be ordered as follows:

AL =p(A) > [Xa| = |A3] = -+ = |Anl,
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where A, is a simple eigenvalue with the corresponding eigenvector z(1) € R" being positive.
We choose an arbitrary nonnegative vector z(® € R with [|z(¥||, = 1. We expand z( as
a linear combination of the eigenvectors of A: z(® = ¥, ¢;z(®. Since A is symmetric the
eigenvectors constitute an orthogonal basis. So, the coefficients ¢;’s are the inner products
¢; = (2©,20), i=1,2,--- n, which means that ¢, > 0. We apply now the theorem of the
Power method. So, the limit of A*z(%) tends to the eigenvector z(!) as k tends to infinity.
This means that for a certain () > 0 there exists an m such that A¥z© > 0 for all k¥ > m.
If we choose the largest of all m’s over all initial choices z(?) > 0, specifically

ky = max {mlAzk>0Vk2m},
USQ;(D)EIRT*, ”3(0)”2:1

we take that for all z(? > 0, A*z(®) > 0 for all k > ko, which proves our assertion.

(44 = ¢): From the Perron-Frobenius theory of nonnegative matrices, the assumption
A* > 0 means that the dominant eigenvalue of A* is positive and simple while the corre-
sponding eigenvector is positive. It is well known that the matrix A has as eigenvalues the
k™ roots of those of A* with the same eigenvectors. Since it happens Yk > kg, A possesses
the strong Perron-Frobenius property. g

Theorem 2.2 For a matriz A € R™ the following properties are equivalent:
i) Both matrices A and AT possess the strong Perron-Frobenius property.
i) There ezists an integer ko > 0 such that A* > 0 for all k > ky.

Proof: (i = 4i): Let A= XDX! be the Jordan canonical form of the matrix A. We
assume that the simple eigenvalue \; = p(A) is the first diagonal entry of D. So the Jordan
canonical form can be written as

A 0 W7
A = [:U(l}]Xn,'n,—l] [ 01 { Dn—]_ o :’ [ Yy__]_ :I ) (21)

where y(1" and Y15 are the first row and the matrix formed by the last n — 1 rows of X 1,
respectively. Since A possesses the strong Perron-Frobenius property, the eigenvector z(!) is
positive. From (2.1), the block form of AT is

3 0 (nt
Af= [y(l)lYnjll,n] [ 01 ||DT ] [ }?T } . (2.2)

n—1l,n—1 nn—1

The matrix DI_, . _, is the block diagonal matrix formed by the transposes of all Jordan
blocks except A;. It is obvious that there exists a permutation matrix P € R* "~ such
that the associated permutation transformation on the matrix DT, .y transposes all the
Jordan blocks. So, Dy -1 = PTDY P and relation (2.2) takes the form:

n—1,n—1

T _ [ (OyT 1lo][1] o0 M| 0 1]0 1] 0 BT
A = [y |Yn_1,n][olpl[0|PT Ong—l,n—l OlP UIPT XT

n,n—1

}T
_ (1) T Al | 0 17(,1
[y [K},—l,n] [ O IDn—l,n-l X,-I b) (23)

n,n—1
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where Yo, = YZ, Pand X/, ; = PTXZ, ;. The last relation is the Jordan canonical
form of AT which means that y(!) is the eigenvector corresponding to the dominant eigenvalue
A1. Since AT possesses the strong Perron-Frobenius property, y(*) is a positive vector or a
negative one. Since y™7 is the first row of X~ we have that (y(*),z()) = 1 implying that
y() is a positive vector.

We return now to the Jordan canonical form (2.1) of A and form the power A*

k (T
Ak — [a:(l)I-Xn,n—l] [ A1 | 0 :| Y ]

0 | Dk—l,n—l L Yn—l,n
or | i (a3
4 1 0 yt
ok ) X e )
Alf‘ [:I? | s 1] 0 | %Dﬁ—l,n—l i Yn—l,n

Since A is the simple dominant eigenvalue, we get that

lim —1—JD"C

= (.
E=vne )\ff n—1,n—1

So,
lim ikAk = J:(l)y(l)T > 0.

k—oo /\1
The last relation means that there exists an integer kg > 0 such that A¥ > 0 for all k > kg
and the first part of Theorem is proved.

(4 = 4): From the Perron-Frobenius theory of nonnegative matrices, the assumption
A* > 0 means that the dominant eigenvalue of A* is positive and simple while the corre-
sponding eigenvector is positive. Considering the Jordan canonical form of A*, V& > ko, we
get that the matrix A has as the dominant eigenvalue the positive k% root of the one of A*
with the same eigenvector. So, A possesses the strong Perron-Frobenius property. The proof
for the matrix A7 is the same by taking (4%)T = (AT)*F > 0. O

We observe that Theorem 2.1 is a special case of Theorem 2.2. Nevertheless, it is stated
and proved since the proof is quite different and easier than that of Theorem 2.2.
In the sequel some statements with necessary conditions only follow.

Theorem 2.3 If AT € R™ possesses the Perron-Frobenius property, then either

> a5 = pl4) Vi=10n, 2.4

miin (Zﬁ: aij) <p(4) < max (i: aij) . " (2:5)

Moreover, if AT possesses the strong Perron-Frobenius property, then both inequalities in
(2.5) are strict.
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Proof: Let that (p(A),y) is the Perron-Frobenius eigenpair of the matrix AT and £ € R™
is the vector of ones ( =11 1) ) We form the product y7 A¢:

'ﬂ‘.
j=1 Q15

yTAE — yT i : J

Z (yzz%) < max (Z a,J) > (2.6)

i=1 =1
n
j=1 Qnj

Similarly, we have that

yT A€ = Z (yi Z: au) > mm (Z azj) i Y;. (2.7)

i=1 j=1 =1
On the other hand we get

yTAE = €7 ATy = p(A)ET Zyz (2.8)

i=1
Relations (2.6), (2.7) and (2.8) give us relation (2.5). It is obvious that the inequalities
in (2.5) become equalities if max; (Z?=1 a,-j) = min; (E?=1 a,z»j), which proves the equality
(2.4). It is also obvious that the inequalities in (2.6) and (2.7) become strict if y > 0. So,

the inequalities in (2.5) become strict if A7 possesses the strong Perron-Frobenius property.
O

Note that it is necessary to have max; (23—1 %) > 0, otherwise Theorem 2.3 does not

hold and so, AT does not possess the Perron-Frobenius property. On the other hand, it is
not necessary to have min; (Z}Ll at-j) 2> 0 as is shown in the following example.

11 -3
A= -4 1 1 |.
8 5 8

The vector of the row sums of A is (—1 —2 21)7, while AT possesses the strong Perron-
Frobenius property with the Perron-Frobenius eigenpair: (6.868 , (0.4492 0.6225 0.6408)T).

Example 2.1 Let

By interchanging the roles of A and AT, Theorem 2.3 gives an analogous result for the
column sums. This is presented in the following corollary.

Corollary 2.1 If A € R™" possesses the Perron-Frobenius property, then either

Zn:aij =p(4) Vj=1(1)n, (2.9)

=1

min (an aij) < p(4) < max (i aa-j) . (2.10)

7o\i=1 i=1

or

Moreover, if A possesses the strong Perron-Frobenius property, then both inequalities in
(2.10) are strict.
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We define now the space P of all vectors £ > 0 with at least one component being
positive and its subspace P*, the hyperoctant of vectors z > 0. Then, the previous results
are generalized as follows.

Theorem 2.4 If AT € IR™ possesses the Perron-Frobenius property and z € P*, then
either

n . .
i;% — p(A) Vi=1(1)n, (2.11)
or . .
7 x’i 2 i

Moreover, if AT possesses the strong Perron-Frobenius property, then both inequalities in
(2.12) are strict and

sup {min (M)} = p(A) = inf {max (M) } . (2.13)

TeP* % Z; zeP* i T;

Proof: Let z € P*. We define the diagonal matrix D = diag(z;, s, -, T,) and consider
the similarity transformation B = D™'AD (see Varga [16], Theorem 2.2). Then the entries
of B are b;; = igfl Since B is produced from A by a similarity transformation and D and
D~ are both nonnegative matrices, we obtain that BT possesses also the Perron-Frobenius
property. As a consequence we have

n n
in [ 2= %%\ |« Jo4) < inf Zj=1 H%5 9.14
sap {min (B2 )| <o < i {mae (B2 ) | a9

which implies (2.12). We choose now the Perron-Frobenius eigenvector y in the place of z.
It is easily seen that inequalities (2.12) become equalities, which means that those in (2.14)
become also equalities and the proof is complete. O

By interchanging the roles of A and A”, Theorem 2.4 gives us analogous results for the
column sums stated in the corollary below.

Corollary 2.2 If A € IR™™ possesses the Perron-Frobenius property and x € P*, then either
¥ D

n o .
Q5T j

ELA — p(d) ¥i=1(1)n, (2.15)
or n n
- (2—“—’-) 2 ()5 e (2——?—) | (2.16)

Moreover, if AT possesses the strong Perron-Frobenius property, then both inequalities in
(2.12) are strict and

sup {m_in (&E;ﬂﬁ)} = p(A)= inf {max (M) } ; (2.17)

TEP* 1 i TEP* 1 :Bi
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In the sequel we give some monotonicity properties concerning the dominant eigenvalue
in the case where the matrices possess the Perron-Frobenius property. It is well known that
the eigenvalues and the entries of the eigenvectors are continuous functions of the entries of
a matrix A. So, if A possesses the strong Perron-Frobenius property, then a perturbation
of A, A= A+ FE provided ||E|| is small enough, possesses also the strong Perron-Frobenius
property. It is also well known, from the theory of nonnegative matrices, that the dominant
eigenvalue of a nonnegative matrix A is a nondecreasing function of the entries of A, when
A is reducible, while if A is an irreducible matrix, it is a strictly increasing function. Then
two questions come up: What happens to the monotonicity in case the matrices possess
the Perron-Frobenius property? Does the property of “possessing the Perron-Frobenius
property” still hold when the entries of A increase, as it does in the nonnegative case?
Unfortunately, the answer to the second question is not positive. It depends on the direction
in which we increase the entries, as we will see later. First we give some properties which
provide an answer to the first question.

Theorem 2.5 If the matrices A, B € IR™" are such that A < B, and both A and BT possess
the Perron-Frobenius property (or both AT and B possess the Perron-Frobenius property),
then

p(A) < p(B). (2.18)

Moreover, if the above matrices possess the strong Perron-Frobenius property and A # B,
then the inequality in (2.18) is strict.

Proof: Let z > 0 be the Perron-Frobenius eigenvector of A associated with the dominant
eigenvalue A4 and let y > 0 be the Perron-Frobenius eigenvector of BT associated with the
dominant eigenvalue Ag. Then the following equalities hold

y' Az = M ayFz, yT'Bz = AgyTz.
Since A < B, we. can write B = A+ C, where C > 0. So,
y'Br = yT(A+ C)z = yT Az + yTCz > yT Az

Assuming that 37z > 0, the above relations imply that Ag > A4. The case where y7z = 0
is covered by using a continuity argument. For this we consider the matrices A’ and B’
which are small perturbations of the matrices A and B, respectively, such that for the corre-
sponding perturbed eigenvectors we will have ¢z > 0. The above inequality holds for the
perturbed eigenvalues and because of the continuity the same property holds for the eigen-
values of A and B. It is obvious that if we follow the same reasoning we can obtain the same
result in case both AT and B possess the Perron-Frobenius property. It is also obvious that
the inequality becomes strict in case the associated Perron-Frobenius properties are strong. O

We note that the above property does not guarantee the existence of the Perron-Frobenius
property for an intermediate matrix C' (A < C < B) and does not give any information about

p(C).
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Theorem 2.6 Let (i) AT € R™ possess the Perron-Frobenius property and = > 0 (z #0)
be such that Az —ax > 0 for a constant o > 0 or (ii) A € IR™ possess the Perron-Frobenius
property and x > 0 (z # 0) be such that z7A — az” > 0 for a constant o > 0. Then

a < p(A). (2.19)
Moreover, if Ax — ax > 0 or z7A — azT > 0, then the inequality in (2.19) is strict.

Proof: For hypothesis (i), let ¥ > 0 be the Perron-Frobenius eigenvector of A associated
with p(A). Then, the following equivalence holds

¥ (Az — az) > 0 <> (p(4) — a)yTz > 0.

If yTx > 0, then the inequality (2.19) holds. In the case where yTz = 0 we recall the pertur-
bation argument used in Theorem 2.5 to prove the validity of (2.19). If Az — az > 0, the
above inequalities become strict and therefore (2.19) becomes strict. For hypothesis (ii) the
proof is similar. O

The above theorem is an extension of Corollary 3.2 given by Marek and Szyld in [8], for
nonnegative matrices. The following theorem is also an extension of Lemma 3.3 of the same

paper [8].

Theorem 2.7 Let (i) AT € IR™™ possess the Perron-Frobenius property and z > 0 be such
that ax — Az > 0 for a constant o > 0 or (ii) A € R™™ possess the Perron-Frobenius
property and x > 0 be such that az” — zTA > 0 for a constant & > 0. Then

p(A) < a. (2.20)
Moreover, if ax — Az > 0 or az” — 2T A > 0, then the inequality in (2.20) becomes strict.

Proof: As in the previous theorem we give the proof only for hypothesis (i). Let y > 0
be the Perron-Frobenius eigenvector of A associated with p(A4). Then, we have

Y (0z — Az) 2 0 <= (a = p(4))y"z > 0.

Since z > 0 we have that yTz > 0 and the inequality (2.20) holds. If oz — Az > 0, the above
inequalities become strict and therefore (2.20) becomes strict. a

We remark that the condition z > 0 is necessaty. This is because for z > 0 such that
Az = 0, the condition az — Az > 0 holds for any o > 0, but the inequality (2.20) is not true
for any a > 0.

We give now two monotonicity properties depending on the direction in which the entries
of a matrix increase.
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Theorem 2.8 Let A € R™ possess the Perron-Frobenius property with x > 0 the associated
eigenvector. Then, for the matriz B such that

B=A+exy’, €>0, y>0 (2.21)

there holds
p(4) < p(B). (2.22)

Moreover, if A possesses the strong Perron-Frobenius property and y > 0 (y # 0), then
inequality in (2.22) becomes strict.

Proof: By post-multiplying (2.21) by z we obtain
Bz = (A + exyT)z = (p(A) + eyT:c) T

which means that p(A) + eyTz is an eigenvalue of B. Since eyTz > 0 we take the inequality
(2.22). The analogous proof for the strict case is obvious and is omitted. O

It is obvious that an analogous property could be given by considering that A7 possesses
the Perron-Frobenius property. However, we have to remark that the above property does
not guarantee the existence of the Perron-Frobenius property for the matrix B. To do this
we give the following statement.

Theorem 2.9 Let A € R™" be such that both A and AT possess the strong Perron-Frobenius
property with z and y being the associated eigenvectors, respectively. Then, for the matriz
B such that

B=A+exy", €>0, (2.23)

there holds that both B and BT possess the strong Perron-Frobenius property and
p(4) < p(B). (2.24)

Proof: The proof of the strict inequality (2.24) is obtained from Theorem 2.8 and from
the fact that z,4 > 0. To prove the existence of the strong Perron-Frobenius property of
B and BT we use Theorem 2.2. We form B* = (A + ezy?)* and expand it into a sum of
products of the matrices A and zy” with the first term being 4*. Since Azy” = p(A)zy?
and 2y A = p(A)zy”, all the other 2 — 1 terms in the expansion, except A*, are eventually
positive scalar multiples of powers of the matrix zy”. This means that the sum of all the
other terms, except the first one, is a positive matrix. From Theorem 2.2 we have that
there exists a kq such that A* > 0 for all £ > ky. So, for this ky we have also B¥ > 0 for
all k£ > ko, which means that both B and BT possess the strong Perron-Frobenius property. O

We have to remark here that Theorem 2.8 gives a weak result for a dense set of directions
zy”, for all y > 0, while Theorem 2.9 gives a stronger result for precisely one direction zy?.
Based on continuity properties we can conclude that the last result is valid also for a cone
of directions around zyT.
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3  Convergence theory of Perron-Frobenius splittings

In this section we define first the Perron-Frobenius splittings analogous to Regular, Weak
Regular and Nonnegative splittings.

Definition 3.1 Let A € R™ be a nonsigular matriz. The splitting A= M — N is

(i) a Perron-Frobenius splitting of the first kind (kind I) if M~'N possesses the Perron-
Frobenius property.

(1) a Perron-Frobenius splitting of the second kind (kind II) if NM ™! possesses the Perron-
Frobenius property.

In the sequel, for simplicity, by the term Perron-Frobenius splitting we mean Perron-
Frobenius splitting of kind L. It is obvious from the above definition that the classes of
Regular splittings, Weak Regular splittings and Nonnegative splittings belong to the class
of Perron-Frobenius splittings. So, the class of Perron-Frobenius splittings is an extension of
the well known, previously defined, classes. In the following, we state and prove convergence
and comparison statements about this new class of splittings.

3.1 Convergence Theorems

The following theorem is an extension of the one given by Climent and Perea [4].

Theorem 3.1 Let A € IR™™ be a nonsigular matriz and the splitting A = M — N be a
Perron-Frobenius splitting, with = the Perron-Frobenius eigenvector. Then the following
properties are equivalent:

(1) p(M~IN) < 1

(it) AN possesses the Perron-Frobenius property

(iti) p(M-IN) = 2400

(iv) A='Mz >z

(v) A-ANz > M~1Nz.

Proof: It can be readily found out that the matrices A=* N and M !N are connected via
the relations yielded below.

A'N=M-N)'N=(I-MN)'MIN (3.25)

or
M7N=(A+N)'N=(I+A"'N)"1A7IN. (3.26)

The above relations imply that the matrices A™'N and M~!N have the same sets of eigen-
vectors with their eigenvalues being connected by

i=1,2,---,n, (3.27)

where A;, u;, 1 =1,2,---,n, are the eigenvalues of M~1N and A~1N, respectively.
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(i) = (i0): From p(M~'N) < 1 and (3.27), there is an eigenvalue y = 232V > 0 of
A~IN corresponding to the eigenvector z. Looking for a contradiction, assume that there is

another eigenvalue ' = % corresponding to p(A~1N). So,

70\ N
TN~ T-p(i—N)  H

The eigenvalue A" belongs to the disc |z| < p(M~'N) and 1 — p(M~1N) is the distance of
the point 1 from this disc. So, |1 — X| > 1 — p(M~!N) which constitutes a contradiction.

(ii) = (iii): Since A~'V has the Perron-Frobenius eigenpair (p(A~IN), z), property (iii)
follows from (3.26) by a post-multiplication by z.

(iii) = (i): It holds because p(A~1N) > 0.

(i) <= (iv): It is obvious that

p(ATIN) = |¢| =

1

-1 — — -1 p— — =1 ~1 = — 7.

A" Mz =M -N)"*Mz=(I-M'N)z l—p(M—lN)x
Since £ > 0, z # 0,

1 = -1
_— 1 > - N l1<=0<p(M™N) < 1.
1_p(M_1N)x_:c4z}0<1 p(M~™'N) < p( )

(i) <= (v): Considering relation (3.25) and the fact that z > 0, z 0, we get,
=
"INz > M1 _AMN) > p(M™'N)z <= p(M™IN) < 1.
ANz > M N:r:<—~——>1_p(M_1N)a:__p( Jz o( )

O

We can also state an analogous Theorem for the convergence properties of the Perron-
Frobenius splittings of kind II. The proof follows the same lines as before and is omitted.

Theorem 3.2 Let A € R™ be a nonsigular matriz and the splitting A = M — N be a
Perron-Frobenius splitting of kind II, with x the Perron-Frobenius eigenvector. Then the
following properties are equivalent: '

(i) p(M-1N) = p(NM-) < 1

(i) NA™! possesses the Perron-Frobenius property

(i#)) p(MIN) = 100

(iv) MA™'z >z

(v) NA~lz > NM~z.

Theorems 3.1 and 3.2 give sufficient and necessary conditions for a Perron-Frobenius
splitting to be convergent. The following two theorems give only sufficient convergence
conditions and constitute also extensions of the ones given by Climent and Perea [4].

Theorem 3.3 Let A € R™" be a nonsigular matriz and the splitting A = M — N is a
Perron-Frobenius splitting, with = the Perron-Frobenius eigenvector. If one of the following
properties holds true:

(i) There exists y € IR™ such that ATy >0, NTy > 0 and yTAz > 0

(i1) There exists y € R™ such that ATy >0, MTy > 0 and yTAz > 0

then p(M~IN) < 1.
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Proof: We consider the vector z such that y = (AT)~!z, then the above properties are
modified as follows:

(i) There exists z > 0 such that 27 (A"1N) > 0, 27z > 0, and
(ii) There exists z > 0 such that 27 (A7 M) > 0, 27z > 0,
respectively. We suppose that property (i) holds true. By post-multiplying by z we get

2ZX(A7IN)z = p2Tz > 0,

where 4 is the eigenvalue of A~!N corresponding to the eigenvector z. So, u = l—f(p{M—],;—an%.
Since 27z > 0 we get that u > 0, which means that p(M~N) < 1.
Let that property (ii) holds true, then by following the same steps we get
XA M)z = /2"z >0
where p' = T_—F}Wlflm > 0 which leads to the same result. |

Moreover, we can prove that property (ii) is stronger than property (i), which means that
the validity of (i) implies the validity of (ii) but the converse is not true. For this let that
property (i) holds. Then

ATy >0= MTy - NTy>0= MTy > Ny >0.

1t is obvious that the converse cannot hold.
For the Perron-Frobenius splittings of kind II, the following theorem is stated.

Theorem 3.4 Let A € R™" be a nonsigular matriz and the splitting AT = MT — N7 is a
Perron-Frobenius splitting of kind II, with x the Perron-Frobenius eigenvector. If one of the
following properties holds true:

(i) There ezists y € IR™ such that Ay > 0, Ny > 0 and y* ATz > 0

(ii) There erists y € IR™ such that Ay > 0, My > 0 and yTATz >0

then p(M~IN) < 1.

We have to remark here that because of the sufficient conditions only, in Theorems 3.3
and 3.4, we cannot have any information about the convergence unless such a y vector exists.
We show this by the following three examples.

Example 3.1

(z’)Az(; Zﬁ),N=(i3 3)’M=(:3£ §)=T=(—1 §)

e[ -3 1 e 21 B _ ( 0.5054
ATN = ( 05 -1 ) AM={ _g5 ¢ ) AT =44142 3= (0509 |
where T = M~!N. A vector z > 0 (z # 0) such that either 27 (A7!N) > 0 or 2T (A™*M) > 0

does not exist and so the splitting is not convergent.

’ -1 0 0 -2 0.9375 —0.125
(“)A:(?, —4)’N:( 5—1)’M_(8 —5)’T"( 0.5 o)’
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v (7T -1\ 4., (8 -1 0.8658
4 N‘(4 -0.5)"4 M‘(4 0.5) AR) = 08653, (05003
There exists no z > 0 (z # 0) such that z7(A"1N) > 0 but for 27 = (1 3) we have
zT(A71M) > 0, so the splitting is convergent.

QR =1 0 0 —2 1.0625 —0.3750
("”)A‘(3 —4)=N=( 5—3)’M_(8—7)’T_( 0.5 0)’

(T -3\ L., (8 -3 0.8590
A N“(4 —1.5)"4 M‘(4 —0.5) p(T) = 08390, 2 (05119

There exists no z > 0 (z # 0) such that either 27(A"1N) > 0 or 2T(A"1M) > 0 but the
splitting is convergent.

We have also to remark that the strict condition y” Az > 0 is necessary. This is shown
in the following example.

Example 3.2

1 w2 =i =9 & 1 -1 10 12
A=| 38 -4 1|, N=| -7 71|, M=| -4 32|, 7=]| -1 5
- I 4 25 —2 1 1.5 -1 2 00

-3 1 -25 0.5054
ATIN=| =05 -1 =2 |, p(T)=4.4142, z=| 0.8629 |.
0 0 05 0

For the vector 22 = (0 0 1) all but one of the conditions of Theorem 3.3 (1) hold. However, since
2Tz =0 the splitting is not convergent.

From Theorems 3.3 and 3.4 the corollaries below follow.

Corollary 3.1 Let A € R™" be a nonsigular matriz and the splitting A = M — N be a
Perron- Frobemus splzttmg, with z the Perron-Frobenius eigenvector. If one of the matrices
(ATIN)T or (A7IM)T possesses also the Perron-Frobenius property with y the associated
Perron—Frobemus eigenvector, such that yTz > 0, then p(M~'N) < 1.

Proof: Since y > 0 and y7(47IN) > 0 or y7(A"1M) > 0, respectively, the vector y plays
the role of z in the proof of Theorem 3.3, so the splitting is convergent. a

Corollary 3.2 Let A € R™ be a nonsigular matriz and the splitting AT = MT — N7 be a
Perron-Frobenius splitting, with z the Perron-Frobenius eigenvector. If one of the matrices
NA~! or MA™? possesses also the Perron-Frobenius property with y the associated Perron-
Frobenius eigenvector, such that yTz > 0, then p(M~IN) < 1.
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3.2 Comparison Theorems

The following theorem is an extension of the one given by Marek and Szyld (8] for nonnegative
splittings.

Theorem 3.5 Let A € IR™ be a nonsingular matriz such that A= > 0. If one of the
following properties holds true:

(i) A= M; — N, and AT = M — NI are two convergent Perron-Frobenius splittings of kind
I and of kind II, respectively, with Ty := M{'Ny, TT = (M;'Ny)T and z > 0, y > 0 the
associated Perron-Frobenius eigenvectors, respectively, and

Noz > Niz, (3.28)

(i) AT = MT — NT and A = M, — N, are two convergent Perron-Frobenius splittings of
kind II and of kind I, respectively, with TY := (M7'N,)T, Ty := M;'N, andy/ >0, 2> 0
the associated Perron-Frobenius eigenvectors, respectively, and

NQZ 2 le, (329)
then
p(T1) < p(T3). (3-30)
Moreover, if A™' > 0 and Nox # Niz, Naz # Ny 2z, respectively, then
p(T1) < p(T3). (3.31)

Proof: Let that property (i) holds. Then
A7 INoz > AN, z.

Since the above splittings are convergent, from Theorem 3.1 property (ii), we get that the
matrix A~'V; possesses the Perron-Frobenius property and from Theorem 3.2 property (i),
we get that the matrix (A~1N,)T possesses the Perron-Frobenius property, with = and y the
Perron-Frobenius eigenvectors, respectively. So,

A7 Noz — p(A™INy)z > 0

and by Theorem 2.6 we get that p(A~'N,) > p(A~'N;). Since p(A7IN;) = -l-f—%,ll—),

p((ATINL)T) = p(A7IN,) = 1—% and the fact that the function ;2 is an increasing

function of p € (0,1), the result (3.30) follows. The strict inequality (3.31) becomes obvious
from the fact that A™! > 0 and Noz # Nz, Noz # Nyz, respectively. The proof in case
property (ii) holds is analogous, where use of Theorem 2.7 is made this time. O

We show the validity of this theorem by the following example.
Example 3.3 We consider the splittings A = M; — N; = My — Ny = M3 — N3 where

4 -1 -1 -1 4 -1 0 0
-1 4 -1 -1 ~1 4 -2 0
A= 1 1 4 1| M= 0 -2 4 -1 |°

g, =1 =1 4 0 0 -1 4
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4 -11 02 0 4 -1 0 0

| =11 4 -1 0 -1 4 o0 o
M, = 02 -1 4 -1 | Ms= @ 0 4 —
0 0 -1 4 0 0 -1 4

The splitting A = M; — N; is a Perron-Frobenius splitting with the Perron-Frobenius
eigenpair being (p(T1), z1) = (0.5345, (0.5680 0.4212 0.4212 0.5680)T ). The splitting
AT = MT — NY is a Perron-Frobenius splitting of kind IT with the Perron-Frobenius eigen-
pair being (p(T3), ;) = (0.6126, (0.6388 0.2855 0.3871 0.6005)T ) - Although N, — N, is
not a nonnegative matrix, we have (N, — Np)z; = (0.0421 0.3644 0.5348 0)T > 0. More-
over, At > 0 and Npz; # Nyz1. So, property (i) of Theorem 3.5 holds and the inequality
p(Th) < p(T3) is confirmed. We can check that for the first two splittings, property (ii) of
Theorem 3.5 also holds.

To compare the last two splittings we observe that the splitting A = M, — N, is a Perron-
Frobenius splitting while A = M — N; is a regular splitting, but properties (i) and (ii) of
Theorem 3.5 do not hold. So, Theorem 3.5 does not give any information.

We have to observe here that both properties (i) and (i) of Theorem 3.5 hold for the com-
parison of the first splitting with the last one, since N3 — N; > 0. So, p(T1) = 0.5345 <
o(T3) = 0.6667 is confirmed.

The above theorem can be extended further by replacing condition A=! > 0 by a weaker
one. So, we can have the following statement.

Theorem 3.6 Let A € R™ be a nonsingular matriz. If one of the following properties
holds true:

(i) A= My~ Ny and AT = MF — N are two convergent Perron-Frobenius splittings of kind
I and of kind II, respectively, with Ty := M{'Ny, TY := (M;7'No)T and z > 0, y > 0 the
associated Perron-Frobenius eigenvectors, respectively, such that

yTA1>0, yTz>0 and Noz > Nz, (3.32)

(ii) AT = MT — NT and A = My, — N, are two convergent Perron-Frobenius splittings of
kind II and of kind I, respectively, with TT := (M7 *Ny)T, Ty := My Ny and o' >0, z > 0
the associated Perron-Frobenius eigenvectors, respectively, such that

yTA1>0, vT2>0 and Nz > Nz, (3.33)

then
p(T1) < p(T2). (3.34)

Moreover, if yTA™! > 0 and Nyz # Nz for property (i) or yTA™! > 0 and Noz # Nyz for
property (ii) , then
p(T1) < p(T3). (3.35)

Proof: Let that property (i) holds. Then from the first and the last inequalities of (3.32)
we get
yTA Nz > yT AN, 2.
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As in Theorem 3.5, it can be implied in a similar way that both matrices A—1N; and (A7I1N,)T
possess the Perron-Frobenius property, with z and y the Perron-Frobenius eigenvectors,
respectively. So,

p(ATIN2)y"z — p(A™ Ny )y"z > 0

and therefore p(71) < p(T3). The strict inequality (3.35) is obvious. The proof in case
property (ii) holds is similar. U

Theorem 3.7 Let A € IR™" be a nonsingular matriz. If one of the following properties
holds true:

(i) A= M; — Ny and AT = MT — N be two Perron-Frobenius convergent splittings of kind
I and of kind II, respectively, with Ty := M{'Ny, Tf = (My*Ny)T and z > 0, y > 0 the
associated Perron-Frobenius eigenvectors, respectively,

Niz >0 and M7 > M; P, (3.36)

(i) AT = MT — NI and A = M, — N, be two Perron-Frobenius convergent splittings of kind
II and of kind I, respectively, with TZ = (M7*N\)T, Tp := M;IN, and y' > 0, z > 0 the
associated Perron-Frobenius eigenvectors, respectively,

Noz >0 and M7' > MY, (3.37)
then
p(Th) < p(Ty). (3.38)
Moreover, if M{' > Mz and Nyx # 0, Naz # 0, respectively, then
p(T1) < p(T2). (3.39)

Proof: We assume that property (i) holds. Then
1

Mz =
. .O(Tl)

N]_.T)ZO

and

1 - p(Th)
— _ e PR S )
Az = Mi(I — Tz (T 1Z

By premultiplying by M7 — M5 > 0 we get
(M{' = MDAz = (I - Tz — (I — To)z = Toz — p(T1)z > 0.

By Theorem 2.6 we obtain the result (3.38). The strict inequality (3.39) is obvious and that
the proof in case property (ii) holds is quite analogous. O

We observe that Theorem 3.7 provides an answer to Example 3.3 where Theorem 3.5
failed. Especially, we have My ' — M5! > 0 and Nozo > 0, Naz, # 0. So the strict inequality
p(T2) = 0.6126 < p(T3) = 0.6667 is confirmed. It is easily checked that property (ii) of
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Theorem 3.7 also holds. We also observe that both properties (i) and (ii) of Theorem 3.7
hold for the comparison of the first with the second splitting as well as the first with the last
one.

As we provided an extension from Theorem 3.5 to Theorem 3.6 we can extend also
Theorem 3.7 by simply replacing the condition M;* > M3 by a weaker one. This is stated
in the following theorem, where the proof is similar to the previous omne.

Theorem 3.8 Let A € R™" be a nonsingular matriz. If one of the following holds:
(i) A= M, — N; and AT = MT - NI are two convergent Perron-Frobenius splittings of
kind I and of kind II, respectively, with T, := M{ Ny, TF := (M7 'Ny)T and z > 0, y > 0
the associated Perron-Frobenius eigenvectors, respectively, Nyz > 0 and VM >yt M
vz >0,
(i) AT = MT — NT and A = My — N, are two convergent Perron-Frobenius splittings of
kind II and of kind I, respectively, with TT := (M7*N,)T, Ty := My Ny and v’ > 0, z > 0
the associated Perron-Frobenius etgenvectors, respectively, Noz > 0 and yT M7 > T M !,
yTx > 0, then

p(T1) < p(T3). (3.40)
Moreover, if yTM{' > y"M; ' and Niz # 0 or yTM{' > yT M5! and Noz # 0, respec-
tively, then the inequality (8.40) is strict, while if yTM;' = yTM;" or yENM, S = g
respectively, then the inequality (3.40) becomes an equality.

In the following example it is shown how the three previous theorems work.

Example 3.4 We consider the splittings A= My — Ny = Mo—No = My — N3 = My;— N, =
Mg — N5 where

3 -1 -1 300 g =1 0
A= -1 3 -1 3 M1= 030 y M2= -1 3 0 3
1 =1 .3 0 03 0 0 3

300 d -1 —1 3 0 -1
M3 = -1 3 0 3 M4 e 0 3 0 3 M5 = 0 3 0 .
103 0 0 3 10 3

It is easily checked that all the above splittings are convergent ones with

p(T3) =0 < p(Ty) = p(T3) = p(Ty) = % < p(Ts) = 0.4472.

The first four splittings are Perron-Frobenius splittings while the last one is a nonnegative
splitting. The splittings AT = MT — NI = MT — Nf = MT — N7 are also Perron-Frobenius
splittings while the splitting AT = MZ — N7 is a nonnegative splitting. The associated
Perron-Frobenius eigenvectors are:

0.7071 0.8018 0.4082 0.6325
Ti=z,= | 07071 |, z3= | 05345 |, z4= | 0.8165 |, zs= | 0.7071 |,

0 0.2773 0.4082 0.3162
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0 05130
n=ys=ys= | 07071 |, ys= | 0.6882 |,
0.7071 0.5130

where by z; and y; we have denoted the associated Perron-Frobenius eigenvectors of kind I
and of kind II, respectively. It is easily checked that A~! is not a nonnegative matrix so,
Theorem 3.5 cannot be applied and therefore we will try to confirm our results by applying
Theorems 3.6, 3.7 or 3.8. We use the symbol i <+ j to denote the comparison of the i*"
splitting with the 7% one:

1 <+ 2 : It is easily checked that assumptions (¢) of Theorems 3.6, 3.7 and 3.8 hold, where
the roles of 77 and T3 have been interchanged, to obtain p(73) < p(73). Note that the strict
inequality cannot be obtained from any of the above theorems.

1 <» 3 : Theorems 3.6 and 3.7 cannot by applied while both assumptions (¢) and (i) of
Theorem 3.8 hold with the corresponding inequalities y¥ M7 ! > yI M;' and y? M7* >
y{ M3 " being equalities. So, we obtain p(T}) = p(T3).

3 «<» 2 : The same properties, as in the case 1 ++ 2, hold. Therefore, p(T5) < p(T3).

3 «+ 4 : The same properties, as in the case 1 <+ 3, hold. So, p(T3) = p(Ty).

4 <+ 2 : The same properties, as in the case 1 +» 2, hold. Consequently, p(T3) < p(T}).

4 <+ 5 : Both properties of Theorems 3.6, 3.7 and 3.8 are applied to give the inequality
p(Ty) < p(Ts). Moreover, we have that y¥ A=! > 0 and yf M7 > yTM;', which gives by
Theorems 3.6 and 3.8, respectively, the strict inequality p(Ts) < p(T5).

5 <+ 2 : From property (i) of Theorem 3.6 and the fact that yZ A=! > 0 we obtain the strict
inequality p(T3) < p(T5).

We conclude this work by pointing out that the most general extensions and generaliza-
tions of the Perron-Frobenius theory for nonnegative matrices, have been introduced, stated
and proved. Our theory can be applied for the solution of linear systems derived from the
discretisation of elliptic and parabolic partial differential equations, from integral equations,
from Markov chains and from other applications. The introduced Perron-Frobenius split-
tings can also be used in connection with the multisplitting techniques in order to solve
linear systems of the aforementioned applications on computers of parallel architecture.
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